Therapeutic hypercapnia improves functional recovery and attenuates injury via antiapoptotic mechanisms in a rat focal cerebral ischemia/reperfusion model.
نویسندگان
چکیده
Recent studies have demonstrated neuroprotective effects of therapeutic hypercapnia for different forms of brain injury. However, few studies have assessed the neuroprotective and neurobehavioral effects of hypercapnia in focal cerebral ischemia, and the underlying mechanisms are still unclear. Here, we investigated the effects of therapeutic hypercapnia in focal cerebral ischemia in the rat middle cerebral artery occlusion/reperfusion (MCAO/R) model. Adult male Sprague Dawley rats were subjected to 90 min of MCAO/R and subsequently exposed to increased carbon dioxide (CO2) levels to maintain arterial blood CO2 tension (PaCO2) between 80 and 100 mmHg for 2h. Neurological deficits were evaluated with the corner test at days 1, 7, 14, and 28. Infarction volume and apoptotic changes were assessed by 2, 3, 7-triphenyltetrazolium chloride (TTC) staining, and terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate-biotin nick end labeling (TUNEL) staining at 24h after reperfusion. Apoptosis-related proteins (Bcl-2, Bax, cytochrome c, and caspase-3) were investigated by western blotting. The results of this study showed that therapeutic hypercapnia significantly reduced infarct volume and improved neurological scores after MCAO/R. Moreover, hypercapnia treatment increased the survival rate at 28 days after reperfusion. The TUNEL-positive neurons in the ipsilateral cortex were significantly decreased in the hypercapnia group. Mitochondrial Bcl-2 and Bax cortical expression levels were significantly higher and lower, respectively, in hypercapnia-treated rats. In addition, hypercapnia treatment decreased cytosolic cytochrome c and cleaved caspase-3 expression and increased cytosolic Bax expression. These findings indicate that therapeutic hypercapnia preserves brain tissue and promotes functional neurological recovery through antiapoptotic mechanisms.
منابع مشابه
P34: Berberin Exerts Neuroprotective Effects by Modulating Pro and Anti-Inflammatory Cytokines in Rat Model of MCAO
Many complicated mechanisms are involved in brain ischemia and the role of inflammatory factors in the progression of post-ischemic injury is inevitable. In present study, anti-inflammatory effect of berberine has been investigated in reperfusion injury after acute ischemic stroke. Male Wistar rats weighing 250-270 gr were randomly divided into four cohorts: healthy rats (control, n=20), sham-o...
متن کاملNeuroprotective effects of crocin on the histopathological alterations following brain ischemia-reperfusion injury in rat
Objective(s): Some histopathological alterations take place in the ischemic regions following brain ischemia. Recent studies have demonstrated some neuroprotective roles of crocin in different models of experimental cerebral ischemia. Here, we investigated the probable neuroprotective effects of crocin on the brain infarction and histopathological changes after transient model of focal cerebral...
متن کاملLecithinized superoxide dismutase improves outcomes and attenuates focal cerebral ischemic injury via antiapoptotic mechanisms in rats.
BACKGROUND AND PURPOSE Recent studies have shown the antiapoptotic neuroprotective effects of lecithinized superoxide dismutase (PC-SOD) in different forms of brain injury. We tested the effects of PC-SOD in focal cerebral ischemia in the rat middle cerebral artery occlusion model (MCAO). METHODS Adult male Sprague-Dawley rats were treated with PC-SOD (0.3, 1.0, and 3.0 mg/kg) administered in...
متن کاملEffects of normobaric hyperoxia pretreatment on ischemia-reperfusion injury in regional ischemia model of isolated rat heart
Abstract Introduction: Resent studies have been shown beneficial effects of hyperoxia pretreatment against ischemia-reperfusion injury in different organs. The aim of the present study was to investigate early and late effects of normobaric hyperoxia (≥95% O2) pretreatment on ischemia-reperfusion injuries in isolated rat hearts. Methods: Following 60 and 180 minutes of hyperoxia, rat hearts w...
متن کاملInhibition of nitric oxide synthase activity improves focal cerebral damage induced by cerebral ischemia/reperfusion in normotensive rats
Introduction: Nitric oxide seems to play a dual role in ischemia/reperfusion injury. Few studies have investigated whether it exacerbates or improves brain edema. In the present study, we inhibited the activity of nitric oxide synthase by L-NAME and evaluated the cerebral infarct volume, tissue swelling and brain edema, alongside the measurement of blood flow of the ischemic region. Methods...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Brain research
دوره 1533 شماره
صفحات -
تاریخ انتشار 2013